The HoloMonitor® Single Cell Tracking Assay provides software which facilitate long-term imaging and tracking of adherent cells, allowing label-free characterization of heterogeneous cell behavior on a single-cell level.
Mammalian cells can be highly dynamic in both morphology and behavior. Characterizing and tracking heterogeneous cell behavior over time on a single-cell level is critically important when studying rare events, such as the acquisition of therapeutic resistance, or transition events, such as differentiation.
Quantitative single-cell imaging using high content analysis allows for kinetic evaluation of adherent cells. However, fluorescent labels are often required for accurate cell state classification. The disruptive and cytotoxic effects commonly associated with fluorescent dyes can limit the length of time single cells are tracked unperturbed. Additionally, fluorescent labels must be applied a priori to classify cell states of interest, despite observations that a single gene expression is often insufficient to predict behavior or cell state.
Hejna et al., High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells, Scientific Reports (2017)
Furthermore, it is increasingly acknowledged that the outcome of cancer therapy is determined by the response of individual cells on a molecular level. Live cell time-lapse imaging and single-cell tracking is a powerful tool to understand the behavior of individual cells and to gain insight into how cell-to-cell variability translates to the overall drug response of an entire cell population.
Kamlund et al., Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy, Cell Cycle (2017)
The HoloMonitor cell tracking software facilitates this growing demand for label-free kinetic classification of subpopulations within heterogeneous unperturbed cell cultures.
The possibility to track adherent cells is the most advanced and powerful feature of the HoloMonitor live cell imaging system. Based on singel-cell quantitative phase imaging, it allows cell movement and morphology of adherent cells to be tracked, monitored and analyzed over extended periods of time, without requiring labels or genetic modifications. Motion and kinetic morphology data are provided individually for each cell and as mean values for all cells included in the analysis.
The HoloMonitor® Live Cell Assays (screenshot of the HoloMonitor cell imaging software, App Suite )
Our [single-cell tracking] data clearly show that there are subpopulations of rapidly dividing cells, hiding in population-based data such as the population doubling time. Thus, by only drawing conclusions based on population data, important biological processes on individual cell levels may be neglected.
Lund University
Cell movement is categorized both by non-directional cell motility and by directional cell migration. Cell motility is the random cell movement, occurring in varying magnitude in almost every cell culture. Cell migration is the non-random movement caused by a cell attractant or repellent.
A spatial plot created by the HoloMonitor Single-cell Tracking software, showing that one cell stands out among the other cells by having a clear directional movement.
Video showing L929 cells, first untreated and thereafter treated with colcemid. Notice how the chemotherapy drug dramatically reduces cell motility.
In addition to cell motion, HoloMonitor quantifies a wide range of morphological properties of tracked cells, for example, cell volume, area, thickness, irregularity and roughness. Each of these properties may be plotted as time series to observe and quantify how they vary over time and over cell divisions.
In the above time-series, the cell volume of a single cell is imaged and tracked during division, showing a steep increase in volume before division followed by an immediate halving of the cell volume after division.
If preferred, all live cell tracking data can easily be exported to Excel for further analysis and graphical presentation.
The HoloMonitor® Single-cell Imaging and Tracking Assay offers robust, non-invasive kinetic quantification of cell morphology and movement.
Commentary article discussing the fundamental role of cell movement studies in cancer research. Advantages of the HoloMonitor Cell Tracking and Wound Healing Applications over the transwell migration and invasion assays are highlighted, and includes the possibility to use the cells in experiments for other purposes after completing the imaging. In addition to single cell tracking, the HoloMonitor technology also benefits from the fact that morphology analysis can be performed of each cell. The author concludes that this indeed opens up for almost unlimited possibilities to perform cell morphology analysis using this methodology, since each image is very rich in cellular information.
Digital holographic microscopy was used for longitudinal cell tracking of individual cells. Various parameters were investigated and the results suggest that EMT (epithelial to mesenchymal transision) and MET (mesenchymal to epithelial transission) can be investigated using this method.
The authors used singel-cell tracking and machine learning to develop a robust method for label-free classification of adherent cells.
In this PHI webinar, our application specialist Lisa Bodily introduces the exciting field of label-free live cell imaging. We discuss live cell imaging techniques and highlight reasons to work label-free. You will learn how digital holographic microscopy visualizes your cells and get to know our HoloMonitor system. Also, our label-free applications for cell biology research are presented and some examples highlighted.
View the webinar on demand here