Cancer Research

Advancing Cancer Research with Quantitative Live Cell Imaging

Cancer is a leading human disease with persistently high mortality rates. Thus, understanding the how, where, why and with whom metastatic cancer cells disseminate and proliferate is one of the highest importance in cancer research. The HoloMonitor live cell imaging system advances your cancer research with a non-invasive way to measure and quantify cell activity in real-time without compromising the integrity of your precious cells. Therefore, you can get more accurate and native results from your experiments.

HoloMonitor - A cell culture microscope directly inside your incubator

A live cell analysis tool with real-time data

Find out more about how HoloMonitor live cell imaging can accelerate your cancer research!

Featured publications within cancer research

Compare directional cell movement in medulloblastoma cancer cells

The expression of long non-coding RNAs (lncRNAs) influences diverse cellular activities and is often cancer-specific. Thus lncRNAs are a useful diagnostic and therapeutic target for cancer. By altering the expression of lncRNA levels, it is possible to affect the cell movement in medulloblastoma cancer cells.

In this publication, the authors evaluated the effect of lncRNA on cell motility and showed that it promotes the migration of tumor cells using HoloMonitor wound healing assay and single cell tracking assay.

Four-day time-lapse quantitative phase imaging of cytokinesis failure in primary melanocytes transduced with MIR211-5p.

Measure mitotic activity in melanocytes

Cutaneous melanoma is deadly skin cancer. The activating mutation BARFV600E mutation exists both in moles and over half cutaneous melanomas.

In this study, in order to investigate why the same mutation has such different consequences in moles and melanomas, the authors using HoloMonitor studied cell proliferation, cell dry mass, cell death and cell growth rate. The experiments showed by increasing the levels of two microRNAs in melanocytes induces mitotic failure, genome duplication, and proliferation arrest. BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional depending on the differentiation state of the melanocyte.

Cell QC

Are you interested in discussing non-invasive live cell imaging for your cancer research project?

Quantify cell motility under hypoxia stress in breast cancer

Hypoxia is an important factor known to initiate the metastatic cascade in cancer, activating cell motility and invasion by silencing cell adhesion genes.

In the study, the authors using cell motility assay demonstrated that epigenetic enzyme (G9a) accumulation in hypoxia leads to CDH10 protein transcription repression.  This enhances cancer cell motility and is an integral part of hypoxia-mediated epithelial-mesenchymal transition (EMT) in breast cancer.

Study cell movements in 3D culture for cancer biomechanics

Studying the tumor microenvironment is one of the highest importance in cancer research as most tumors depend on a supporting cast of non-cancerous cells for their nourishment, growth and survival. 3D cell culturing mimics the actual physiological conditions in vivo than the traditional 2D cell cultures. This is particularly important when studying cell movements as the higher complexity of the microenvironment affect the biomechanics.

In this application note, the author used HoloMonitor single cell tracking and wound healing assay to quantify cell movement with 3D Matrigel cell cultures.

On-demand webinar

The secrets to truly controlled cell experiments for cancer research

Find out how HoloMonitor provides better insights by analyzing proliferation, morphology and movement data for both single cells and cell populations.

Discover HoloMonitor Live Cell Assays

Learn more about what you can do with HoloMonitor

Answer cancer research questions with quantitative live cell imaging

24 hours time-lapse video of MDA-MB-231 breast cancer cells

72 hours time-lapse video of JIMT-1 breast cancer cells

Browsing publications in cancer research

Get inspired by other research fellows, and learn how HoloMonitor quantitative live cell imaging can benefit your cancer research:

CAT3, a prodrug of 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro[9,10-b]-indolizidine, circumvents temozolomide-resistant glioblastoma via the Hedgehog signaling pathway, independently of O6-methylguanine DNA methyltransferase expression

Authors: Ji M et al.

Journal: OncoTargets and Therapy (2018)

Research Areas: Cancer research

Cell Lines: U251/TMZ and T98G

Keywords: HoloMonitor M4, Cell count, Gli inhibitor, Chemotherapy, Lomeguatrib, Xenograft tumor model

Learn more …

Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

Authors: Miroslav Hejna et al.

Journal: SPIE Conference Proceedings (2018)

Research Areas: Cancer research

Cell Lines: Human melanoma cell

Keywords: HoloMonitor M4, Digital holography, Image segmentation, Melanoma, Holography, Tumors, Cancer

Learn more …

A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells

Authors: Jing Huang et al.

Journal: JoVe (video journal) (2018)

Research Areas: Cancer Research

Cell Lines: KHOS

Keywords: HoloMonitor M4, Cell morphology, Cell motility, Cell migration, Cell proliferation

Learn more …

NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression

Authors: Junyi Ju et al.

Journal: Nature Communications (2017)

Research Areas: Cancer research

Cell Lines: human lung cancer cells

Keywords: HoloMonitor M4, Cell viability, Cell migration, Lung cancer

Learn more …

The role of Vimentin in Regulating Cell Invasive Migration in Dense Cultures of Breast Carcinoma Cells

Authors: Yonatan Messica et al.

Journal: Nano Letters (2017)

Research Areas: Cancer research

Cell Lines: MDA231

Keywords: HoloMonitor M4, Cell motility, Cell mechanics, Biophysics, Vimentin, Collective motility, Metastasis

Learn more …

Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells

Authors: Hiroyuki Ogawa et al.

Journal: Scientific Reports (2017)

Research Areas: Cancer research

Cell Lines: A549

Keywords: HoloMonitor M4, Cell motility, Cancer stem cell

Learn more …
1131415161719

The expansion of our existing collaboration with PHI is the result of productive utilization of HoloMonitor technology for non-invasive real-time cell cycle analysis in living cells. We are now developing state-of-the art applications multiplexing cell cycle and cell motility.

ED LUTHER
NORTHEASTERN UNIVERSITY

Discover our partners in cancer research